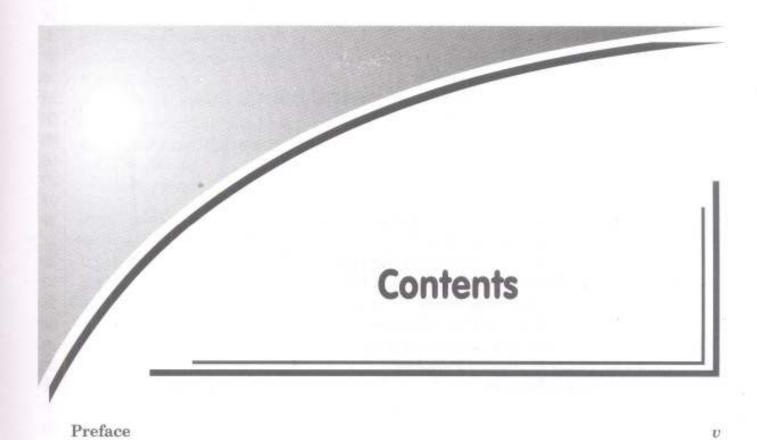
NEW AGE

Powder Metallurgy for Automotive and High Performance Materials in Engineering Industries

P. Ramakrishnan

Copyright © 2012, New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers First Edition: 2012


ISBN: 978-81-224-3031-8

₹ 495.00

C-11-05-5574

Printed in India at Glorious Printers, Delhi. Typeset at Inhouse.

PUBLISHING FOR ONE WORLD
NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS
4835/24, Ansari Road, Daryaganj, New Delhi-110002
Visit us at www.newagepublishers.com

1.	New Products and Processes and	the Global Growth of Powder M	etallurgy 1–13
	1.1 Introduction		1
	1.2 Ancorsteel® 4300		3
	1.3 Ancorsteel 737SH Capabilities		7
	1.4 Higher Density		9
	1.5 Ancordense® Process (Warm Co	ompaction)	10
	1.6 Ancormax D® Process (Warm I	Die Compaction)	10
	1.7 Ancormax 200 Process		11
	1.8 Conclusions		12
	References		13
2.	An Industry Overview on Sinter	Hardening Solutions	14–22
	2.1 Introduction		14
	2.2 Experimental Procedure	1961	15
	2.3 Results and Discussion		19
	2.4 Influence of Size and Mass		20
	2.5 Conclusions		21
	References		22
3.	Developments in PM Engine Co.	mponents	23–35
	3.1 Some Main Objectives of the Au	tomobile Manufacturers	23
	3.2 Some Means to Achieve those G	loals	25

	3.3	Contrib	oution of PM Technology to the Market Demands	26
		3.3.1	Powder-forged Connecting Rods	26
		3.3.2	Main Bearing Caps	27
		3.3.3	Aluminum Camshaft Bearing Caps	27
		3.3.4	Gasoline Pump Elements	28
		3.3.5	Variable Flow and Weight Reduced Oil Pumps	28
		3.3.6	VVT: Variable Valve Timing	29
		3.3.7	Composite Camshafts	29
		3.3.8	Lightweight Distribution Pulleys	30
		3.3.9	Common Rail Diesel Injection Systems	30
		3.3.10	EGR: Exhaust Gas Recirculation Systems	31
		3.3.11	Stainless Steel Exhaust Flanges	31
		3.3.12	Gasoline Injection System	32
		3.3.13	Increased Pressure Power Steering	32
	3.4	Evolut	ion of Necessary Technologies in PM	33
		3.4.1	Sinter Hardening Steels	33
		3.4.2	Low Alloy, Low Cost, High-strength Alloys	33
		3.4.3	Improved Soft-Magnetic Materials and their Processing	33
		3.4.4	Sinter-Hardening Furnaces	33
		3.4.5	Sinter Forging	33
		3.4.6	Press Hardening	33
		3.4.7	Warm Compaction	33
		3.4.8	Improved Compacting Lubricants	34
		3.4.9	Improved Coining Lubricants	34
		3.4.10	Improved Precision Presses and CNC Controls	34
		3.4.11	Increased Number of CNC Plattens in Presses	34
		3.4.12	Improved Tool Geometry and Tolerancing	34
		3.4.13	Surface Densification	34
		3.4.14	Improved Stainless Steels Processing	34
		3.4.15	New Sealing and Plating Technologies	34
		3.4.16	More Sophisticated Machining Machines	34
		3.4.17	Improved Cleaning Machines and Cleanliness Control Systems	34
		3.4.18	Novel Non-destructive Testing	35
		3.4.19	Novel On-line and Off-line Inspection Systems	35
	3.5	Conclu	sions	35
4.	PM	Mater	ials for Gear Applications	36-44
	4.1	Introdu	uction	36
	4.2	Experi	ment and Material	37
	4.3	Conclu	sions	43
		Refere	ences	44

5.		Approach to Reduce Costs of Heat Treated Powder Metallurgy	Parts 45-60
	5.1	Introduction	45
	5.2	Sinter-Hardening Alloys	46
	5.3	Sintering Furnace Design	48
	5.4	Tempering	50
	5.5	0.3% Mo Prealloyed Powder for Heat Treated Applications	51
	5.6	Experimental Procedure	54
		Results and Discussion	. 55
	5.8	Conclusions	59
		References	59
6.	Dev	relopment of Indigenous Sintered Metallic Valve Guide	
	for	High Speed Automobiles	61–65
	6.1	Introduction	61
	6.2	Experimental	62
	6.3	Properties Evaluation of Components	63
	6.4	Conclusions	64
		References	65
7.	Dev	relopment and Characterization of Iron Based Metal Matrix	
	Con	posite for Brake Pads Applications	66–72
	7.1	Introduction	66
	7.2	Experiment	67
	7.3	Results and Discussion	70
	7.4	Conclusions	71
		Acknowledgements	71
		References	71
8.	Exp	ected Changes in PM Part Compaction	73–80
		Introduction	73
	8.2	Influences	75
	8.3	Perspectives for the Future	75
	8.4	CNC Hydraulic Press with CPA-controlled Punch Adapter	78
	8.5	Conclusions	79
		References	80
9.	Hig	h-Speed Presses Increased Economy in Powder Compacting	81-87
	9.1	Introduction	81
	9.2	Possible Explanation	83
10.	Imp	prove Overall Equipment Effectiveness on	
		vder Compacting Systems	88-94
		Calculations	88

x	Co	ntents	
	10.2	Improvement of the Availability Facto	rs 89
		Performance Factors	92
	10.4	Quality Factors	93
		Conclusions	94
11.	Mod	ern Hot-Pressing Technology Mak	es Sintering Quick and Easy 95-100
		Introduction	95
	11.2	Dr. Fritsch Direct Hot Pressing	97
	11.3	Dr. Fritsch Direct Hot Presses	98
		References	100
12.	Dev	elopment of Automated Cleaning	l'echnique of Top Plungers
	Ind	ucted in Rotary Press Used for the	Fabrication of PFBK Size
	Ann	ular Fuel Pellets	
	12.1	Introduction	101
	12.2	Mixed Oxide Annular Pellets Fabrica	
		Modification	103
	12.4	Conclusions	104 105
		Acknowledgements	
		References	105
13.	The	Magic of "Open Book Managemen	it (OBM)" ACuPowder
	Inte	ernational, LLC Case History	106–112
	13.1	Background on ACuPowder Internation	onal, LLC 106
	13.2	Initial Asset Based Financing Structu	
	13.3	Operating and Motivational Philosoph	109
	13.4	Open Book Management	110
	13.5	OBM-What is it?	111
	13.6	OBM-How to Implement it?	111
	13.7	OBM-Why does it Work?	111
	13.8	It was Magic	112
	13.9	Hurdles and Challenges	112
	13.10	Conclusions	112
14.	Stu	dies on the Hydroxide Preparatio	n, Calcination and Related
	Cha	racterization in the Powder Meta	llurgy of Hafnium 113–118
		Introduction	114
	14.2	Experimental	114
		Results and Discussion	116
	14.4	Conclusions	118
		Acknowledgements	118
		References	118

15.	Prej	paratio	n of High Purity Sub-Micron Spheroidal Zirconia	
	Pow	der fro	om Impure Zirconium Salt through Glycerol Route	119–124
	15.1	Introdu	action	119
	15.2	Experi	mental	120
	15.3	Result	and Discussion	121
		15.3.1	Preparation of Pure Zirconia Powder	121
			Preparation of Yttria Stabilized Zirconia	121
	15.4	Conclu	sions	122
		Referen	nces	124
16.	Syn	thesis a	and Characterization of Bi & Ta Doped Nanocrystalline PZ	C
	Feri	roelecti	rics by Mechanical Activation	125–131
	16.1	Introdu	action	125
	16.2	Experi	mental Work	126
	16.3	Conclu	sions	130
		Referen	nces	130
17.	Syn	thesis a	and Characterization of CaWO, : AG Powders for	
			Display Applications	132-139
		Introdu		132
	17.2	Experi	mental	133
			and Discussion	134
	17.4	Conclu	sions	138
		Acknow	vledgements	139
		Referen		139
18	The	Effect	of Chemistry and Microstructure on	
10.				140-151
		Introdu	전투자, 교통적인 전투 프로바이트 (1) 프로그램 (1) 프로그램 (1) 보고 (1)	141
	18.2	Experi	mental	141
			s and Discussion	143
	18.4	Conclu	sions	150
		Acknow	vledgements	150
		Referer		150
19	Dev	elonme	nt and Fabrication of U-Mo Alloy Fuel Granules	
10.			sion Fuel Application in Research and Test Reactors	152-168
		Introdu	[10] 얼마나 있었다. 그 사람들은 10 프라이트 사용에 가게 되어 되었다. 그 사람들은 아이들에 가장 아이를 보고 있다. 그는 사람들이 아이들이 되었다. 그 그 사람들이 되었다. 그 사람들이 되었다.	152
			mental Work	155
		19.2.1	Fabrication of U-10wt% Mo Alloy by Powder Metallurgy Route	155
		19.2.2	Alloy Preparation by Induction Melting Route	157
		19.2.3	Fabrication of U-Mo Alloy Fuel Granule from	4.50
			Pellet/Billet by Hydriding Dehydriding Method	158

•	м	и	н
	и	и	н
ĸ.	а	ш	ш

Contents

		19.2.4	Characterization	159
			and Discussion	161
			Phase Analysis	161
			Optical Microscopy	164
	19.4	Conclus		167
			vledgements	167
		Referen		168
20.	Imp	roved l	Powder Metallurgy Technique for Fabrication of Mixed Uranium	i.
	Plut	onium	Carbide Fuel Pellets for Fast Breeder Test Reactor 169	-176
		Introdu		169
	2012		Fabrication of Mixed Uranium Plutonium Carbide Fuel	170
	20.2		abrication Facility	171
			ation of UC Insulation Pellets for FBTR	175
		Conclu		176
		Referen		176
21.	Dev	elopme	ent and Characterization of Aluminium Based Hybrid	
	Met	al Mat	rix Composites for Light/Heavy Duty Applications	7-185
	21.1	Introdu	action	178
	21.2	Materia	als	178
		21.2.1	Disc	178
		21.2.2	Test Pins	179
	21.3	Experi	mental Details	179
		21.3.1	Determination of Density (Archimedes Principle)	179
		21.3.2	Brinell Hardness Test	179
		21.3.3	Wear Testing of the Composites	180
	21.4	Results		180
		21.4.1	Effect of Load and Sliding Speed on Wear Characteristics	180
		21.4.2	Effect of Load and Sliding Speed on Co-efficient of Friction (COF)	181
		21.4.3	Effect of Load and Sliding Speed on Temperature Rise at Mating Surfa	ce 182
		21.4.4		182
		21.4.5	A Comparative Study of Al-based Composites with Fe-based Composites	183
	21.5	Discus	sions	184
	21.6			184
		Refere	nces	185
22.	Tes	t Meth	odology to Evaluate the Wear Performance of PM Matrices	0.100
	use	d in Di	amond Impregnated Tools for Cutting Hard Materials 18	
	22.1	Introd	uction	186
	22.2	Wear	Equipment and Test Methodology	187
	22.3	Powde	er Sintered Matrices and their Properties	188
	22.4	Result	s of Wear Tests in Matrices without Diamond	190

×		400		Contents	xiii
	22.5	Tests u	sing Matrices with Diamond		191
			ions and Final Remarks		192
	9000010010	Referen	ces		193
23.	Mac		Enhancing Solutions for PM Materials		194-208
		Introdu			194
	23.2	Descrip	tion of the PM Process		194
			ing Operations on PM Steels		195
	23.4	Factors	that Affect Machinability		195
	23.5	Sintere	l Iron-based Materials		196
	23.6	Microst	ructures		196
	23.7	Machin	ability Testing		197
	23.8	Influen	ce of Carbon Content on Properties and Macl	nining Processes	198
	23.9	Classif	cation of PM Materials Regarding Machinabi	lity	199
	23.10	Additiv	es		199
	23.11	Influen	ce of MnS and MnX Additions		200
	23.12	Contin	ious and Intermittent Cutting		200
	23.13	Effect of	n Machining Parameters		201
	23.14	Influen	ce of MnS and MnX Additions on Torque and	l Feed Force	202
	23.15	Influen	ce of Tool Material, CBN, on Sinter Hardene	d Astaloy CrM	202
	23.16	Influen	ce of Cutting Mode and Oil Impregnation		203
	23.17	Dry vs	Wet Drilling of Different Materials		204
	23.18	Turnin	Tool Recommendations and Cutting Data		204
	23.19	Selection	n of Drill Type		206
	23.20	Conclu	ions		208
		Referen	ces		208
24			achining on Work Hardening Character		
			eal Route A1/SiCp Metal Matrix Compo	sites	
		Introdu			209
	24.2	Experi	nental Set-up and Procedure		210
	24.3	Experi	nental Results and Discussions		213
		24.3.1	Effect of Size and Volume Fraction of Abras	sive Reinforcement on	
			Microhardness Variation		213
		24.3.2	Statistical Analysis of Microhardness		215
		24.3.3	Degree of Work Hardening		215
	24.4	Conclu			217
			ledgements		218
		Referen	ces		218
		Index			219-222