Powder Metallurgy
for Automotive, Aluminium Alloys, Hard and Super Hard Materials

P. Ramakrishnan
Professor Emeritus
IIT-Bombay, Mumbai, Maharashtra

MEDTEC
An Imprint of
SCIENTIFIC INTERNATIONAL PVT. LTD.
(Publishers & Distributors)
NEW DELHI (INDIA)
Contents

Preface (v)
Contributors (vii)
List of Tables (ix)
List of Illustrations (xi)

Section 1
Powder Metallurgy in Automotive Related Industries

Chapter 1 Powder Metallurgy—Changing Trends 1–8
1.1 The Size of the Industry 1
1.2 Comparative Cost 3
1.3 Innovations in Warm Compaction 3
1.4 Powder Forging 4
1.5 Surface Densification of Selected Areas 5
1.6 Innovations in Materials 6
1.7 Soft Magnetic Composites (SMC) 6
1.8 Developments in Green Machining 7
1.9 Developments in PM Equipment 7
 Conclusions 8
 References 8

Chapter 2 Prealloyed Molybdenum Low-Alloy Steel Powders and the Flexibility of Hybrid Alloys based on these Powders 9–18
2.1 Introduction 9
2.2 Quench-Hardened and Tempered Properties 10
2.3 Hybrid Analogs of Diffusion Alloys based on an Iron Powder 12
2.4 PM Chromium Steels 14
2.5 PM Manganese Steels 16
 Conclusion 17
 References 17

Chapter 3 Effect of Powder Mix Formulation and Sintering Conditions on the Dimensional Stability of Sinter Hardening Powders 19–26
3.1 Introduction 19
3.2 Experimental Procedures 20
3.2.1 Effect of powder formulation on dimensional behaviour
3.2.2 Dimensional consistency in mass production

Conclusions
References

CHAPTER 4 New Press Type EP with Electrical Servo Drive System
4.1 Introduction
4.2 The Electrical Servo Drive System
 4.2.1 Fundamental principles of the electrical servo drive
 4.2.2 Implementation of the technology in the machine
 4.2.3 Control system DVS/DCS® and IPG®
 4.2.4 Advantages compared to previous press types
4.3 Upshot

CHAPTER 5 RAT-CAT in PM Parts Production
5.1 Introduction
5.2 Advantages of Powder Metallurgy Components
5.3 Unique Requirements for Quality in PM
5.4 PM Growth Story
5.5 Key Distinction
5.6 Cost of Quality
 5.6.1 Cost of prevention
 5.6.2 Cost of appraisal
 5.6.3 Cost of internal failure
 5.6.4 Cost of external failure
5.7 General Ratio’s on Cost of Quality—Stage 0 (Current Condition)
5.8 RAT-CAT Approach to Reduce Cost of Quality
 5.8.1 Introduction to RAT
 5.8.2 General ratio’s on cost of quality—Stage 1
 5.8.3 CAT—Cause Analysis Table
 5.8.4 General ratio’s on cost of quality—Stage 2
5.9 RAT-CAT Approach Through Examples in PM Part
5.10 What Next?
Conclusions
References

CHAPTER 6 Hot Isostatic Pressing for Near-net or Net Shape Components for Automotive and Engineering Industry
6.1 Introduction
6.2 Principles of Hot Isostatic Pressing
 6.2.1 Origin of pores [3]
 6.2.2 Closure of pores [3]
6.3 Densification in HIPing and its modeling
6.3.1 Densification steps in HIPing
6.3.2 Densification mechanisms in HIPing
6.3.3 Modeling of HIPing
6.3.4 HIP maps
6.4 Processing Steps and Aspects of Practice
6.4.1 Sintering, Cold Pressing and Cold Isostatic Pressing
6.4.2 Types of Encapsulations
6.4.3 Types of Degassing
6.4.4 Types of HIP Cycles
6.4.5 Decapsulation and Finishing
6.5 Subsystems and Elements of HIP System
6.6 Types of Materials Systems
6.7 Categories of Applications
6.8 Advantages
6.9 Disadvantages
 Conclusion
 References

CHAPTER 7 Characterization of Hipped and Hot Forged Nano-sized Yttria
 Dispersed Fe-20 Cr-4.5 Al-0.5 Ti Ferritic Stainless Steel for High
 Temperature Applications Prepared by MA
7.1 Introduction
7.2 Experimental Details
 7.2.1 Synthesis of nanocrystalline yttria
 7.2.2 Synthesis of yttria dispersed ferritic stainless steel powders by MA
 7.2.3 Hot forging of ODS ferritic stainless steel powders
 7.2.4 High temperature oxidation studies
 7.2.5 Hot isostatic pressing (HIP) of ODS ferritic stainless steel powders
7.3 Results and Discussion
 7.3.1 Characterization of As milled powders
 7.3.2 Characterization of hot forged and solution annealed ODS alloy specimens
 7.3.3 Microhardness tests
 7.3.4 Shear punch tests
 7.3.5 High temperature oxidation study
 7.3.6 Characterization of HIPed ODS specimen
 Conclusion
 Acknowledgement
 References
CHAPTER 8 Metal Injection Moulding—A New P/M Route for Development of Nickel Wicks, Used in LHP’s 66–75

8.1 Introduction 66
8.2 Experimental Procedure 67
 8.2.1 Determining porosity, pore dia and permeability 69
8.3 Results and Discussion 70
 8.3.1 Effect of sintering parameters 71
 8.3.2 Distribution of pore size 72
 8.3.3 Usefulness of polypropylene powder 72
 8.3.4 Microstructural characterization of pore structures 73
Conclusion 74
8.5 Acknowledgements 74
References 75

CHAPTER 9 Laser Cladding and Powders 76–82

9.1 Introduction 76
9.2 Mathematical Models 77
9.3 Laser vs. Conventional Welding 77
9.4 Laser Cladding
 Conclusions 82
 Reference 82

CHAPTER 10 Development of Nickel-based Cladding through Microwave Hybrid Heating 83–90

10.1 Introduction 83
10.2 Experimental Procedure 84
 10.2.1 Materials details 84
 10.2.2 Development of clads 85
 10.2.3 Characterization of the clads 86
10.3 Results and Discussion 86
 10.3.1 X-ray diffraction results 87
 10.3.2 Microstructure study 87
 10.3.3 Microhardness study 89
Conclusions 89
References 89

CHAPTER 11 Experimental Study of Physical Properties of MIM Product made from Industrial Metallic Waste 91–98

11.1 Introduction 91
11.2 Experimental Work 92
11.3 Characterization of Metallic Waste 93
11.4 Feedstock Preparation 94
11.5 Results and Discussion 96
 Conclusion 97
 Acknowledgements 98
 References 98

CHAPTER 12 A Modulated Pole Machine for Use in an Electric Two-wheeler Application 99–103
12.1 Introduction 99
12.2 Laminated Two-wheeler Hub Motor 99
12.3 Modulated Pole Machine 99
12.4 Design Outline 100
12.5 Construction and Testing 101
 Conclusion 102
 References 103

CHAPTER 13 Study of Sintered Metal Matrix Friction Brake Materials 104–111
13.1 Introduction 104
13.2 Material and Experimental Details 105
 13.2.1 Materials and Methods 105
 13.2.2 Metallographic observations 106
 13.2.3 Wear tests 106
13.3 Results and Discussion 107
 13.3.1 Microstructure and worn surface analysis 107
 13.3.2 Wear analysis 107
 13.3.3 Coefficient of friction analysis 108
 Conclusions 110
 Acknowledgement 110
 References 110

SECTION 2
Powder Metallurgy Aluminium Alloys and Composites

CHAPTER 14 Investigation Metallurgical and Mechanical Properties of Aluminium Powder Metal Parts by Microwave Sintering Method 112–116
14.1 Introduction 112
14.2 Experimental Method and Materials 113
14.3 Results and Discussion 113
 Conclusions 116
 Acknowledgement 116
 References 116
CHAPTER 15 Synthesis of Aluminium-based Nanocomposites Employing Cryomilling Technique

15.1 Introduction 117
15.2 Experimental Procedure 118
15.3 Results and Discussions
 Conclusion 119
 Acknowledgments 123
 References 123

CHAPTER 16 Influence of Shot Peening on Mechanical Properties of the Alumix 431 PM Alloys

16.1 Introduction 124
16.2 Experimental Studies 125
16.3 Results and Discussions
 Conclusions 128
 Acknowledgement 134
 References 134

CHAPTER 17 Development of 7075 Aluminium Alloy Reinforced Composites

17.1 Introduction 136
17.2 Experimental Procedure 137
17.3 Results and Discussion
 Conclusions 138
 References 148

CHAPTER 18 Investigation of Stud Weldability of Powder Metal Al Plates

18.1 Introduction 150
18.2 Experimental Procedures 151
18.3 Results and Discussion
 Conclusions 151
 Acknowledgement 154
 References 155

CHAPTER 19 Sliding Wear Behavior of Mechanically Alloyed Al-Si-SiCp Nanocomposites

19.1 Introduction 156
19.2 Experimental 157
19.3 Results and Discussion
 Conclusions 157
 Acknowledgement 162
 References 163
CHAPTER 20 Synthesis of Titanium Aluminides by Mechanical Alloying and their Sintering Behavior 164–174

20.1 Introduction 164
20.2 Experimental Procedure 165
20.3 Results and Discussion 166
 20.3.1 MA process 166
 20.3.1.1 XRD analysis 166
 20.3.1.2 DTA study 168
 20.3.1.3 Microstructure 168
 20.3.2 Sintering process 170
 20.3.2.1 XRD analysis 170
 20.3.2.2 Microstructure 171
 20.3.2.3 EDAX analysis 172
 20.3.2.4 Physical and mechanical properties 172

Conclusion 173
References 173

SECTION 3
Hard and Super Hard Materials

CHAPTER 21 Structure of Nanocrystalline Cemented Carbides Sintered by the Pulse-plasma Method 175–180

21.1 Introduction 175
21.2 Scope and Conditions of Investigations 176
21.3 Results of Investigations 177
 Conclusions 180
 Acknowledgement 180
 References 180

CHAPTER 22 Brittness of Nanocrystalline Cemented Carbides obtained by the PPS Method 181–187

22.1 Introduction 181
22.2 Materials and Methods 182
22.3 Results 184
 Conclusions 187
 Acknowledgement 187
 References 187
CHAPTER 23 Influence of the TaC-NbC on Durability of Cutting Edges Made of Nanocrystalline Cemented Carbides

23.1 Introduction 188
23.2 Scope of Investigations 189
23.3 Materials and Experimental Procedures 189
23.4 Results of Investigations 191
 Conclusions 194
 Acknowledgement 194
 References 194

CHAPTER 24 Synthesis of Boron Carbide through Carbothermal Reduction Using Boric Acid and Sucrose Precursors

24.1 Introduction 195
24.2 Experimental Study 196
24.3 Results and Discussion 197
 Conclusions 201
 Acknowledgement 201
 References 201

CHAPTER 25 Investigation of Mechanical Behavior of B₄C/Diamond Reinforced Fe/Co Metal Matrix Composites Produced by Powder Metallurgy

25.1 Introduction 203
25.2 Experimental Study 204
25.3 Mechanical Tests 205
25.4 Results and Discussion 206
25.5 Wear Test 207
25.6 Microstructure 208
 Conclusion 209
 References 209
 Index 211